Почему даже в лютый мороз водоемы не промерзают полностью
Практически каждый из нас задавался вопросам, почему даже в условиях суровых зим водоемы никогда не промерзают полностью. Оказывается, воду зимой в реках и озерах «согревает», как ни странно, лед, сообщил телеканал «360». Он не пропускает холод и держит температуру в проруби в районе +4 градусов.
Именно такие температурные показатели воды важны для обитателей озер, рек и прудов. Рыбы «зимуют» на дне, где теплее. Кроме того, при +4 вода приобретает свою наибольшую плотность. Чем она холоднее, тем легче.
Осенью и в предзимье, когда температура воды выше +4 градусов, более холодная вода опускается вниз, а теплая поднимается наверх. Идет так называемое вертикальное перемешивание. Как только температура воздуха и воды начинает понижаться, перемешивание замедляется. Верхний слой становится холоднее, и на поверхности начинает появляться защитная ледяная корка, которая не пускает холодный воздух вниз.
По той же причине не замерзают океаны и моря. Дело еще и в соли, а также в их огромной площади и течениях. Исключение составляет Северный Ледовитый океан. Он оправдывает свое название и замерзает почти полностью. В некоторых местах толщина его льда доходит до пятидесяти метров. Ходят по нему только ледоколы.
Чтобы море полностью замерзло, нужны экстремальные условия — морозы около -30 градусов, которые бы стояли несколько месяцев. Последний раз такую картину наблюдали одесситы в 2012 году. Впервые за 30 лет черноморский курорт превратился в черноморский ледник.
Толщина льда водоемов в московском регионе сейчас составляет около 30 сантиметров. Как сообщает региональное МЧС, сплошной ледовый покров сохраняется на большинстве из них. Но все же осторожность не повредит, ведь лед — субстанция коварная.
Между тем, по мнению многих ученых, человечеству стоит ждать не глобального потепления, а ледникового периода. Метеорологи говорят о потеплении в связи с вмешательство человека в окружающую среду. Однако климатологи связывают изменения температуры с активностью Солнца. Читать далее>>
Источник
Почему вода в реках и озерах не замерзает полностью зимой? (2 фото)
Что «согревает» воду в холода
Ученые выяснили, что на «согревание» воды влияет лед: именно он не пропускает холод и поддерживает в озере температуру на уровне +3-4 градусов по Цельсию. Этот процесс выглядит следующим образом: в предзимний период, когда температура опускается до указанного значения, более холодная вода опускается вниз, уступая свое место воде теплой. В этот момент происходит вертикальное перемешивание жидкости, которое замедляется с понижением показателей термометра. В итоге верхний слой становится холоднее, из-за чего на поверхности появляется ледяная корка, которая служит защитой и не пускает вниз холодный воздух.
Ученые отмечают, что по этой причине не замерзают моря и океаны – кроме Северного Ледовитого, который почти полностью «уходит в минус». Причем настолько, что в некоторых местах толщина льда достигает 50 метров.
Но чтобы море прям полностью замерзло, необходима постоянная, поддерживаемая на протяжении многих месяцев температура под минус 30 градусов. Конечно, такие ситуации иногда возникают. К примеру, в 2012 году одесситы увидели, как впервые за 30 лет черноморский курорт превратился в ледник.
Кстати, некоторые исследователи считают, что нам нужно опасаться не глобального потепления, а масштабного похолодания, чуть ли не вплоть до той ситуации, с которой однажды, как говорят ученые, столкнулись динозавры.
Вода, лед – а что между ними?
Интересный в свое время эксперимент поставили химики из американского Университета Юты. В ходе исследований они выяснили, при какой минимальной температуре вода (чисто теоретически) может оставаться жидкостью. Оказалось – при минус 48 градусов по Цельсию. Когда температура приближается к данному показателю, в жидкости начинаются быстрые структурные изменения: молекулы собираются по 4 штуки и образуют тетраэдры.
Ученые назвали данное состояние «промежуточным льдом»: это вроде бы не кристалл, но уже и не жидкость. Скорее, похоже на хаотический сбор неупорядоченных кристаллических ячеек. При указанной температуре тетраэдры образуют правильную решетку, вследствие чего лед промежуточный превращается в настоящий. При этом его плотность падает, но возрастают теплоемкость и сжимаемость. Хотя в других жидкостях последние характеристики, наоборот, падают с понижением температуры.
Американские химики решили, что во время перехода из жидкости в лед вода попадает в промежуточное состояние, после чего ее ячейки превращаются в идеальный кристалл.
Источник
ФОРМИРОВАНИЕ И РАЗРУШЕНИЕ ЛЬДА
Ледовый режим водоема — это циклы покрытия акватории льдом, неизменный каждый год. На водоемах Ленинградской области ледовый режим состоит из трех фаз: замерзание, ледостав и вскрытия водоёмов.
Для возникновения льда в водоёмах необходимо:
— небольшое переохлаждение воды, температура должна быть чуть ниже 0 °С, начиная с сотых долей и ниже;
— наличие ядер кристаллизации, которыми могут являться снежинки, льдинки, минеральные и органические взвеси;
— турбулентное перемешивание для отвода выделяющегося при кристаллизации тепла. Если перемешивания нет, то процесс кристаллизации прекращается.
В водоёмах образуется лед поверхностный и глубинный (внутриводный), кристаллизующийся не только на взвеси, но и на микроорганизмах, частицах песка, гальке и т. д. Температура замерзания снижается с глубиной и с увеличением минерализации.
К факторам, определяющим возможность образования ледовых явлений, относят:
• интенсивность теплоотдачи поверхности водоёма с наступлением холодов;
• величину теплоемкости водоема. Чем больше объём водной массы в водоёме, и чем он глубже, тем длительнее процесс его охлаждения;
• интенсивность перемешивания, связанная с транзитными течениями. Чем более проточен водоем, тем интенсивнее вынос тепла из глубинных слоёв к поверхности, в атмосферу.
Очень важным фактором образования ледяного покрова на водоёмах и наступления ледостава служит ветер. Чем сильнее ветер, тем интенсивнее теплоотдача в атмосферу вследствие испарения и турбулентного теплообмена с морозным воздухом. Перемешивание слоев воды ветром и волнами усиливает теплообмен и вынос теплых глубинных вод к поверхности, что тормозит процесс льдообразования. Интенсивное перемешивание увеличивает толщину слоя воды, в котором возможно образование ледяных кристаллов, всплывающих к поверхности воды (лёд имеет плотность на 10 % меньшую по сравнению с плотностью воды). Ветровое волнение разрушает образовавшиеся ледяные корки, чем замедляет формирование ледяного покрова.
Замерзание водоёмов.
При интенсивном теплообмене и охлаждении вод водоема, но при отсутствии ветра и перемешивания верхних слоем воды образуются первичные кристаллики льда в виде мелких иголочек. Когда вода покрыта ими, кажется, что на её поверхности разлит растопленный жир. Такое состояние водно- кристаллизованной смеси называют «сало». При продолжающемся морозе и безветрии кристаллики смерзаются. Образуется однородный прозрачный кристаллический лед, толщина которого довольно быстро увеличивается. За ясную и морозную ночь толщина такого льда может достичь 2-3 см. При этом, как правило, весь небольшой водоём замерзает единовременно. На крупных озёрах в такую погоду обычно покрываются льдом только мелководные заливы.
Кристаллический лёд в начале зимы наиболее прочный и при толщине 5 см выдерживает вес человека, а при 10 см — снегохода. В озёрах, покрывшихся льдом в морозную, штилевую погоду, подо льдом сохраняется обратная стратификация с относительно тонким подлёдным слоем воды, охлажденной до 0 °С. Если замерзание водоёма происходило в ветреную погоду с перемешиванием и более интенсивной теплоотдачей с водной поверхности, средняя температуры воды в водоеме зимой меньше.
При даже слабом ветре замерзание водоёма начинается с береговых отмелей, выхолаживающейся быстрее из-за малой глубины. Первичные кристаллики сбиваются к урезу и смерзаются, образуя полосы кристаллического льда — забереги, примёрзшие к береговому склону. С усилением мороза забереги расширяются, а открытая поверхность воды сокращается. На крупных и глубоких озёрах и водохранилищах замерзание длительно и проходит разновременно в разных районах.
В формировании ледяного покрова принимают участие всплывающие комья внутриводного льда (шуга) обычно грязно-белого цвета, снежура, образующаяся из снега во взволнованной, ещё не замерзшей водной поверхности. Неровность такого покрова увеличивается, если сильный ветер и колебания поверхности водоёма взламывают ещё не окрепший лед. Он дробится, и трущиеся друг о друга его кусочки превращаются в блинчатый лёд — дискообразные льдинки с выпуклым белым краем смерзшихся ледяных крошек.
Штормовым ветром взламывается и уже достаточно прочный лёд, льдины надвигаются одна на другую и смерзаются в торосы с наступлением менее ветреной, но морозной погоды. На нагонных участках пологого берега из битого льда, шуги и частиц донного грунта в шторм образуются береговые ледяные валы.
Структура и деформации ледяною покрова.
Ледостав — период неподвижного ледяного покрова. В Ладожском озёре в теплую зиму с малой суммой отрицательных температур воздуха площадь ледяного покрова не превышает 50% площади акватории. В такие зимы теплозапас его водной массы наименьший вследствие особенно интенсивной теплоотдачи с большой открытой водной поверхности. В умеренно холодные зимы почти 100 %-ная покрытость льдом продолжается всего 2 месяца, а в суровые зимы она длится почти 3 месяца.
Скорость нарастания кристаллического слоя льда (вследствие кристаллизации воды на его нижней поверхности) зависит от его теплопроводности и того, насколько интенсивны теплопотери с ледяного покрова в атмосферу при морозе. Чем ниже температура воздуха и продолжительнее морозная погода, тем больше намерзает льда снизу, тем всё более толстым становится кристаллический лед на водоёме, увеличивается теплоизоляция воды под ним.
Как правило, ледяной покров неоднороден и имеет двух- или трёхслойную структуру и покрыт слоем снега неравномерной толщины и плотности. Под весом снега лёд прогибается, трескается, из трещин, рыбацких лунок и майн на лёд вытекает вода, смачивает нижний слой снега и в мороз замерзает. Так образуется водно-снеговой лёд, менее плотный и малопрозрачный белёсого цвета из-за включения пузырьков воздуха и пыли.
В оттепели талая вода с подтаивающего снежного покрова в последующие морозы превращается в снеговой лёд. Он по физическим свойствам сходен с водно-снеговым льдом, но отличается по химическому составу, подобному составу атмосферных осадков. Лёд этих двух видов имеет меньшую теплопроводность и отражающую способность, чем кристаллический лёд, что замедляет утолщение ледяного покрова.
Деформации ледового покрова.
Зимой лёд как любое твёрдое тело при охлаждении сжимается. Сжатие больше у верхней поверхности льда, где зарождаются морозные трещины. Нижняя поверхность льда крепко примерзает на мелководьях к грунтам вблизи уреза, поэтому с усилением мороза в трещинах происходит разрыв ледяного покрова, и в расширяющихся до 1-2 м трещинах образуется на воде корка молодого льда. При потеплении лед расширяется, трещины сдвигаются, вызывая торошение молодого льда. Торосы порой достигают высоты 0,5-1,5 м.
Кроме термических деформаций ледяного покрова на озёрах происходят и динамические деформации, вызванные сейшами (стоячими волнами, возникающими в замкнутых или частично замкнутых водоёмах) на открытой воде. На Ладожском озере неоднократно возникало по три трещины вдоль продольной оси и поперёк под действием многоузловой сейши, когда наибольшие изгибы ледяного покрова происходят в прибрежной зоне. При сильном морозе достаточно небольшого изгиба ледяного поля над пучностью сейши, чтобы он треснул.
Таяние льда в водоёмах.
Разрушение ледяного покрова, т. е. вскрытие замерзашего водоема, включает три стадии:
I стадия — таяние снежного покрова. Талая вода пропитывает снег, он темнеет, снижается величина отражающей способности поверхности водоёма, увеличивается поглощение суммарной солнечной радиации, что ускоряет таяние. Вода накапливается на льду, протаивают вдольбереговые трещины, заполняющиеся талой водой. Увеличение расхода воды в притоках приводит к подъему уровня воды в водоёме. Ледяной покров, освободившийся от снега, всплывает. Талая вода с него уходит под лёд. Вдоль берегов образуются закраины у скалистых крутых берегов и более широкие — на мелководьях.
II стадия — активное таяние ледяного покрова. Оно происходит на его верхней поверхности вследствие поглощения льдом солнечной радиации (большая величина радиационного баланса) и турбулентного теплообмена с более тёплым воздухом.
Подтаивает и нижняя поверхность льда вследствие конвективного перемешивания подлёдной воды с нижележащим слоем, нагретым днем проникающей сквозь лед солнечным излучением. Локально оно интенсифицируется динамическим перемешиванием в приустьевых зонах, куда поступают воды притоков. Плотностные течения, несущие теплоту и распространяющиеся из этих зон в подледном слое из-за малой минерализации и плотности вод речного половодья, усиливают подтаивание снизу ледяного покрова. Стаивание льда сверху и снизу уменьшает толщину ледяного покрова примерно на 30 %.
Одновременно таяние происходит внутри пористого водноснегового и прозрачного кристаллического слоев. Оно начинается вокруг содержащихся во льду частиц ионного состава. Образующиеся капли внутрилёдной солоноватой талой воды, поглощающие солнечное излучение, вызывают протаивание вертикальных канальцев диаметром 0,1-1,0 мм между ледяными кристаллами. Это увеличивает рассеяние и поглощение солнечного света в толще льда и ускоряет таяние. Канальца расширяются до 5 мм и более в диаметре, и внутрилёдная вода стекает под лёд, происходит его обессоливание.
Прочность ледяного поля уменьшается настолько, что любая даже небольшая на него нагрузка — ветровое пульсирующее давление сверху или сейшевые колебания воды снизу — разрывает ослабевшие связи между кристаллами льда. Лед рассыпается на отдельные кристаллы диаметром до 5-7 см и длиной 20-30 см и более. В эту стадию выход на лёд крайне опасен.
III стадия — таяние возникающих полей ледяных иглообразных кристаллов и еще не раздробленных льдин. Оно происходит обычно быстро благодаря резкому снижению альбедо смеси воды и ледяных кристаллов, их механическому дроблению волнением и трением друг о друга. Из-за поглощения льдом солнечного излучения весной для его таяния и разрушения в водоёме достаточна в 5 раз меньшая сумма положительных температур воздуха, чем сумма её отрицательных значений зимой для формирования толщи ледяного покрова.
Вскрытие малых озёр, прудов и водохранилищ происходит практически одновременно на всей их акватории. В целом сроки начала ледостава и очищения ото льда озёр и водохранилищ — более поздние, чем на реках. Их запаздывание тем значительнее, чем больше размеры водоёма и меньше его проточность.
Источник
Почему озера не промерзают зимой до дна
С наступлением холодов на поверхности озер образуется тоненькая корочка льда, которая является следствием понижения температуры воды до отрицательных значений. Но зимой, когда температура воздуха опускается ниже 30 градусов мороза, на поверхности озер образуется внушительный слой льда, однако полностью крупные озера не промерзают никогда. Почему это происходит?
Оказывается, когда температура воды начинает понижаться, в замкнутых водоемах происходят очень интересные вещи. Пресная вода, по причине уникальной молекулярной структуры, обладает максимальной плотностью при температуре +4ºС. И когда температура воды продолжает понижаться, в озере происходит разделение слоев с разной температурой, образуется сезонный термоклин.
Вода с температурой +1-2°С всегда легче, чем слой воды с температурой +4°С, который расположен на дне. Из-за слабой циркуляции водных масс (а мы помним, что это не река, а именно глубокое озеро) активного перемешивания и выравнивания температуры не происходит. По этой причине вода с температурой около +4 градусов всегда находится в нижней части водоема. Постепенно нарастающий слой льда и более холодная вода в верхней части водоема не дают промерзнуть озеру до дна. Рыбы и другие водные обитатели продолжают жить в озере, не опасаясь превратиться в кусок льда.
Конечно, для мелких озер это правило не работает, и с приходом отрицательных температур они могут промерзнуть до дна. Предусмотрительные рыбы, как правило, заранее покидают такие опасные для зимовки места и уходят в реки или соседние более глубокие озера.
Источник
Озёрный лёд
Озёрный лёд – различные формы замёрзшей воды в водоёме.
Озёра по характеру ледового режима в зависимости от климатических условий подразделяются на четыре группы: не имеющие ледовых явлений в любой сезон года, с неустойчивым ледоставом, с устойчивым ледоставом зимой, с ледоставом в течение всего года (например, подледниковые озёра в Антарктиде). У озёр третьей группы, находящихся в основном в условиях умеренного климата (и наиболее распространённые в России), так же как и у рек, выделяют три характерных периода ледового режима: замерзания (осенних ледовых явлений), ледостава, вскрытия (весенних ледовых явлений).
Ледовые явления на таких озёрах начинаются после того, как температура поверхностного слоя достигнет точки замерзания (0°С для пресноводных озёр). Этот момент, в свою очередь, наступает несколько позже перехода среднесуточной температуры воздуха через 0°С. Ледостав устанавливается позже начала ледовых явлений.
В сходной последовательности наступают характерные моменты ледового режима в весенний период: сначала среднесуточная температура воздуха переходит через 0°С, затем начинает повышаться температура воды в озере, лёд тает и с некоторым запозданием озеро освобождается ото льда.
Осенние ледовые явления начинаются в наиболее быстро охлаждающихся прибрежных районах озера. На отмелях у берегов возникают полоски льда – забереги. На крупных озёрах эти ледяные образования (как и на морях) называют припаем. Образованию заберегов и припая препятствует волнение. Под воздействием волнения ледяные поля разбиваются на отдельные льдины (образуется так называемый битый лёд и блинчатый лёд). Течения в крупных озёрах, как и на морях, могут приводить к дрейфу льда. Смещение ледяных полей иногда способствует возникновению полос чистой воды – полыней. Нарастание льда в период ледостава происходит тем быстрее, чем суровее зима и меньше слой снега на льду.
Озерный лёд обычно имеет слоистое строение. Непосредственно на поверхности воды лежит прозрачный водный кристаллический лёд, на котором в случае выхода воды по трещинам из пропитанного водой снега образуется малопрозрачный водно-снеговой лёд (наслуз). При подтаивании и последующем смерзании лежащего на льду снега формируется снеговой лёд. Толщина льда на озерах северо-запада Европейской части России достигает 50–60 см, на озёрах севера Сибири – 2–3 м.
Таяние и разрушение льда на озёрах происходит под воздействием солнечной радиации, теплообмена льда с атмосферой и с нагревающейся водой самого озера, теплоты, поступающей с талыми снеговыми, дождевыми и речными водами. В ряде случаев заметное влияние на разрушение ледяного покрова оказывают и механические факторы — течения, ветер, волнение. Чаще всего лёд на озёрах тает на месте, причем лёд стаивает как с верхней, так и с нижней своей поверхности. Раньше всего лёд тает вблизи берегов, уже освободившихся от снежного покрова и поэтому быстрее нагревающихся. Участки чистой воды у берегов, также как и на реках, называют закраинами. Часть льда может быть вынесена из озера вытекающей из него рекой. Поскольку лёд сходит на озёрах позже, чем на реках, на вытекающей из озера реке могут наблюдаться два ледохода «речной» и «озерный». Так, на Неве появление «ладожского льда» уже после очищения от «невского льда» — событие довольно обычное.
Источник