Меню

Лодка плыла некоторое время по течению реки

§ 3. Сложение скоростей и переход в другую систему отсчёта при движении вдоль одной прямой (продолжение)

3. Человек бежит со скоростью 5 м/с относительно палубы теплохода в направлении, противоположном направлению движения теплохода. Скорость теплохода относительно берега 54 км/ч. На какое расстояние сместится человек относительно пристани за 10 с?

4. При движении лодки по течению реки её скорость относительно берега равна 10 м/с. А при движении против течения скорость лодки относительно берега равна 6 м/с.

а) Чему равна скорость лОдки в стоячей воде?

б) Чему равна скорость течения реки?

5. Самолёт летит из города А в город Б при попутном ветре, а обратно — при встречном. Скорость самолёта относительно воздуха в 10 раз больше скорости ветра. Чему равно отношение времени tАБ полёта из А в Б ко времени tБA полёта из Б в А?

6. Пловец прыгает с плывущего по реке плота в воду, отплывает от плота на расстояние l, а затем возвращается обратно. Скорость течения υт, скорость пловца относительно воды перпендикулярна берегу и равна υп.

а) В течение какого времени пловец удаляется от плота?

б) В течение какого времени пловец приближается к плоту?

в) Через сколько времени пловец вернётся на плот?

7. Катер плывёт по реке от пристани А к расположенной ниже по течению пристани В и обратно. Расстояние между пристанями l. Скорость течения υт, скорость катера относительно воды υк (рис. 3.3).

Рис. 3.3

а) Чему равно время tAB движения катера от А до В?

б) Чему равно время tBA движения катера В до А?

в) Чему равно время tp движения катера по реке туда и обратно?

г) Чему равно отношение времени tp движения катера туда и обратно по реке ко времени l движения катера туда и обратно между двумя пристанями, находящимися на расстоянии l на берегу озера?

8. Лодка обгоняет плывущий по реке плот длиной L. За время обгона лодка сместилась относительно берега на расстояние sл. На какое расстояние sп относительно берега сместился за это время плот?

Источник

Задачи на движение по воде

Данный материал представляет собой систему задач по теме “Движение”.

Цель: помочь учащимся более полно овладеть технологиями решения задач по данной теме.

Задачи на движение по воде.

Очень часто человеку приходится совершать движения по воде: реке, озеру, морю.

Сначала он это делал сам, потом появились плоты, лодки, парусные корабли. С развитием техники пароходы, теплоходы, атомоходы пришли на помощь человеку. И всегда его интересовали длина пути и время, затраченное на его преодоление.

Представим себе, что на улице весна. Солнце растопило снег. Появились лужицы и побежали ручьи. Сделаем два бумажных кораблика и пустим один из них в лужу, а второй — в ручей. Что же произойдет с каждым из корабликов?

В луже кораблик будет стоять на месте, а в ручейке — поплывет, так как вода в нем «бежит» к более низкому месту и несет его с собой. То же самое будет происходить с плотом или лодкой.

В озере они будут стоять на месте, а в реке – плыть.

Рассмотрим первый вариант: лужа и озеро. Вода в них не движется и называется стоячей.

Кораблик поплывет по луже только в том случае, если мы его подтолкнем или если подует ветер. А лодка начнет двигаться в озере при помощи весел или если она оснащена мотором, то есть за счет своей скорости. Такое движение называют движением в стоячей воде.

Отличается ли оно от движения по дороге? Ответ: нет. А это значит, что мы с вами знаем как действовать в этом случае.

Задача 1. Скорость катера по озеру равна 16 км/ч.

Какой путь пройдет катер за 3 часа?

Следует запомнить, что скорость катера в стоячей воде называют собственной скоростью.

Задача 2. Моторная лодка за 4 часа проплыла по озеру 60 км.

Читайте также:  Пенная борода первая речка

Найдите собственную скорость моторной лодки.

Задача 3. Сколько времени потребуется лодке, собственная скорость которой

равна 28 км/ч, чтобы проплыть по озеру 84 км?

Итак, чтобы найти длину пройденного пути, необходимо скорость умножить на время.

Чтобы найти скорость, необходимо длину пути разделить на время.

Чтобы найти время, необходимо длину пути разделить на скорость.

Чем же отличается движение по озеру от движения по реке?

Вспомним бумажный кораблик в ручье. Он плыл, потому что вода в нем движется.

Такое движение называют движением по течению. А в обратную сторону – движением против течения.

Итак, вода в реке движется, а значит имеет свою скорость. И называют ее скоростью течения реки. ( Как ее измерить?)

Задача 4. Скорость течения реки равна 2 км/ч. На сколько километров река относит

любой предмет (щепку, плот, лодку) за 1час, за 4 часа?

Ответ: 2 км/ч, 8 км/ч.

Каждый из вас плавал в реке и помнит, что по течению плыть гораздо легче, чем против течения. Почему? Потому, что в одну сторону река «помогает» плыть, а в другую — «мешает».

Те же, кто не умеет плавать, могут представить себе ситуацию, когда дует сильный ветер. Рассмотрим два случая:

1) ветер дует в спину,

2) ветер дует в лицо.

И в том и в другом случае идти сложно. Ветер в спину заставляет бежать, а значит, скорость нашего движения увеличивается. Ветер в лицо сбивает нас, притормаживает. Скорость при этом уменьшается.

Остановимся на движении по течению реки. Мы уже говорили о бумажном кораблике в весеннем ручье. Вода понесет его вместе с собой. И лодка, спущенная на воду, поплывет со скоростью течения. Но если у нее есть собственная скорость, то она поплывет еще быстрее.

Следовательно, чтобы найти скорость движения по течению реки, необходимо сложить собственную скорость лодки и скорость течения.

Задача 5. Собственная скорость катера равна 21 км/ч, а скорость течения реки 4 км/ч. Найдите скорость катера по течению реки.

Теперь представим себе, что лодка должна плыть против течения реки. Без мотора или хотя бы весел, течение отнесет ее в обратную сторону. Но, если придать лодке собственную скорость ( завести мотор или посадить гребца), течение будет продолжать отталкивать ее назад и мешать двигаться вперед со своей скоростью.

Поэтому , чтобы найти скорость лодки против течения, необходимо из собственной скорости вычесть скорость течения.

Задача 6. Скорость течения реки равна 3 км/ч, а собственная скорость катера 17 км/ч.

Найдите скорость катера против течения.

Задача 7. Собственная скорость теплохода равна 47,2 км/ч, а скорость течения реки 4,7 км/ч. Найдите скорость теплохода по течению и против течения.

Ответ: 51,9 км/ч; 42,5 км/ч.

Задача 8. Скорость моторной лодки по течению равна12,4 км/ч. Найдите собственную скорость лодки, если скорость течения реки 2,8 км/ч.

Задача 9. Скорость катера против течения равна 10,6 км/ч. Найдите собственную скорость катера и скорость по течению, если скорость течения реки 2,7 км/ч.

Источник



Задачи на движение по реке с решениями

Задачи на движение по реке воде 11 класс егэ

Задания

  1. Задача 1
  2. Задача 2
  3. Задача 3
  4. Задача 4
  5. Задача 5
  6. Задача 6
  7. Задача 7
  8. Задача 8
  9. Задача 9
  10. Задача 10
  11. Задача 11

Задача 1

Скорость катера в стоячей воде равна 15 км/ч, а скорость течения реки — 3 км/ч. Какова скорость катера по течению и против течения реки?

1) 15 + 3 = 18 (км/ч) — скорость катера по течению реки,

2) 15 — 3 = 12 (км/ч) — скорость катера против течения реки.

Ответ. 18 км/ч и 12 км/ч.

Задача 2

Скорость моторной лодки по течению реки равна 48 км/ч, а против течения — 42 км/ч. Какова скорость течения реки и собственная скорость моторной лодки?

1) 48 — 42 = 6 (км/ч) — удвоенная скорость течения реки,

2) 6: 2 = 3 (км/ч) — скорость течения реки,

3) 48 — 3 = 45 (км/ч) — собственная скорость.

Ответ. 3 км/ч и 45 км/ч.

Задача 3

Скорость моторной лодки в стоячей воде 12 км/ч. По течению она плыла 2,6 ч, против течения 3,15 ч. Найдите скорость течения реки, если путь по течению на 10,8 км больше чем против течения.

Читайте также:  Река не может быть притоком

Пусть скорость течения х км/ч

2,6(12 + х) — расстояние, которое проплыла лодка по течению;

3,15(12 — х) — расстояние, которое проплыла лодка против течения.

2,6(12 + х) — 3,15(12 — х) = 10,8 км/ч

Задача 4

Сергей знает, что собственная скорость его лодки равна 10 км/ч. При этом ему надо успеть проплыть 25 км за 2 часа. Плыть он будет по течению. Какой должна быть скорость течения реки, чтобы Антон успел?

Задача 5

Моторная лодка прошла против течения реки 112 км и вернулась в пункт отправления, затратив на обратный путь на 6 часов меньше. Найдите скорость течения, если скорость лодки в неподвижной воде равна 11 км/ч.

Задачи на движение по реке с решениями

Задачи на движение по реке с решениями

Задача 6

На озере расположены пристани А и В. Расстояние между пристанями равно 90 км. Моторная лодка проплыла от А до В с постоянной скоростью, после чего сразу отправилась обратно со скоростью на 5 км/ч больше прежней. На середине пути из В в А лодка замедлилась и поплыла со скоростью на 2,5 км/ч меньшей, чем по дороге из А в В. В результате лодка затратила на обратный путь столько же времени, сколько на путь из А в В. Найдите скорость лодки на пути из А в В.

Задачи на движение по реке с решениями

Задача 7

Пароход проходит по течению реки до пункта назначения 200 км и после стоянки возвращается в пункт отправления. Найдите скорость течения, если скорость парохода в неподвижной воде равна 15 км/ч, стоянка длится 10 часов, а в пункт отправления пароход возвращается через 40 часов после отплытия из него.

Задачи на движение по реке с решениями

Задача 8

От пристани A к пристани B, расстояние между которыми равно 420 км, отправился с постоянной скоростью первый теплоход, а через 1 час после этого следом за ним, со скоростью на 1 км/ч большей, отправился второй. Найдите скорость первого теплохода, если в пункт В оба теплохода прибыли одновременно.

Задачи на движение по реке с решениями

Задача 9

Баржа в 10:00 вышла из пункта в пункт , расположенный в 15 км от Пробыв в пункте 1 час 20 минут, баржа отправилась назад и вернулась в пункт в 16:00 того же дня. Определите (в км/час) скорость течения реки, если известно, что собственная скорость баржи равна км/ч.

Задачи на движение по реке с решениями

Задача 10

Расстояние между пристанями и равно 120 км. Из в по течению реки отправился плот, а через час вслед за ним отправилась яхта, которая, прибыв в пункт , тотчас повернула обратно и возвратилась в К этому времени плот прошел 24 км. Найдите скорость яхты в неподвижной воде, если скорость течения реки равна 2 км/ч.

Задачи на движение по реке с решениями

Задача 11

Весной катер идёт против течения реки в раза медленнее, чем по течению. Летом течение становится на 1 км/ч медленнее. Поэтому летом катер идёт против течения в раза медленнее, чем по течению. Найдите скорость течения весной (в км/ч).

Источник

Задачи на движение по воде

Верны те же формулы: \[<\large>\]
\(\blacktriangleright\) Если тело движется по реке по течению:
\(v_c\) — собственная скорость тела (скорость в неподвижной воде);
\(v_t\) — скорость течения;
тогда скорость движения тела \(v=v_c+v_t\) .
Значит, \[<\large>\]
\(\blacktriangleright\) Если тело движется по реке против течения:
\(v_c\) — собственная скорость тела (скорость в неподвижной воде);
\(v_t\) — скорость течения;
тогда скорость движения тела \(v=v_c-v_t\) .
Значит, \[<\large>\]
\(\blacktriangleright\) Заметим, что плот — это тело, у которого собственная скорость \(v_c=0\) . Значит, плот может плыть только по течению и со скоростью течения.

Антон знает, что собственная скорость его лодки равна \(10\, км/ч\) . При этом ему надо успеть проплыть \(25\, км\) за \(2\) часа. Плыть он будет по течению. Какой должна быть скорость течения реки, чтобы Антон успел? Ответ дайте в км/ч. Если в задаче может быть более одного ответа – выберите наименьший.

Читайте также:  Богиня реки ганг скульптура имя

Чтобы Антон успел, необходимо и достаточно, чтобы его лодка перемещалась со скоростью не меньше, чем \(25 : 2 = 12,5\, км/ч\) . То есть для того, чтобы Антон успел, необходимо и достаточно, чтобы скорость течения была не меньше, чем \(2,5\, км/ч\) .

Лодка прошла \(10\, км\) по течению, а затем \(5\, км\) против течения. На весь путь лодка затратила \(3\, часа\) . Найдите среднюю скорость лодки на описанном участке пути, если скорость течения равна \(2\, км/ч\) . Ответ дайте в км/ч.

Средняя скорость есть отношение всего пути ко времени, затраченному на этот путь. Независимо от скорости течения, средняя скорость лодки: \[v_ <ср>= \dfrac<10 + 5> <3>= 5\, км/ч\,.\]

Катер береговой охраны прошёл по течению реки Конго 120 км и вернулся обратно. Известно, что обратный путь занял на 1 час больше времени, а скорость катера в неподвижной воде равна 27 км/ч. Найдите скорость течения. Ответ дайте в км/ч.

Пусть \(v\) км/ч – скорость течения, \(v > 0\) , тогда

\(27 + v\) – скорость перемещения катера по течению,

\(27 — v\) – скорость перемещения катера против течения,

\(\dfrac<120><27 + v>\) – время, затраченное катером на перемещение по течению,

\(\dfrac<120><27 - v>\) – время, затраченное катером на перемещение против течения.

Так как время перемещения против течения на час больше, чем время по течению, то: \[\dfrac<120> <27 + v>+ 1 = \dfrac<120><27 - v>\qquad\Leftrightarrow\qquad v^2 + 240 v — 729 = 0\] – при \(v \neq \pm 27\) , что равносильно \(v_1 = 3, v_2 = -243\) , откуда получаем, что \(v = 3\) км/ч, так как \(v > 0\) .

Катер прошел 40 км по течению реки и 6 км против течения реки, затратив на весь путь 3 ч. Найдите скорость катера в стоячей воде, если известно, что скорость течения реки равна 2 км/ч.

Пусть \(x\) км/ч – скорость катера в стоячей воде. Тогда можно составить следующее уравнение: \[\dfrac<40>+\dfrac 6=3 \quad\Rightarrow\quad \dfrac<46x-68>=3 \quad\Rightarrow\quad 3x^2-46x+56=0\] Дискриминант равен \(D=4\cdot 361=(38)^2\) , следовательно, корнями будут \(x_1=\dfrac43\) и \(x_2=14\) . Так как скорость катера не может быть меньше скорости течения, то \(x_1\) не подходит. Следовательно, \(x=14\) .

Теплоход, скорость которого в неподвижной воде равна \(24\) км/ч, проходит по течению реки и после стоянки возвращается в исходный пункт. Скорость течения равна \(3\) км/ч, стоянка длится \(2\) часа, а в исходный пункт теплоход возвращается через \(34\) часа после отправления из него. Сколько километров прошёл теплоход за весь рейс?

Пусть \(S\) – расстояние в километрах, которое проходит теплоход, двигаясь в одну сторону. Тогда: \[\dfrac S<24+3>+\dfrac S<24-3>+2=34\quad\Leftrightarrow\quad S=378\] Тогда за весь рейс теплоход прошел \(2S=2\cdot 378=756\) километров.

От пристани A в направлении пристани В с постоянной скоростью отправился первый теплоход. Через час после этого от пристани В в направлении пристани А отправился второй теплоход, причём скорость второго теплохода на 1 км/ч меньше, чем скорость первого. При этом скорость течения составляет 2 км/ч. Найдите скорость первого теплохода в неподвижной воде, если расстояние от А до В равно 120 км, а встретились теплоходы посередине между пристанями А и В. Ответ дайте в км/ч.

Так как теплоходы встретились посередине, а время, затраченное на это теплоходом с меньшей скоростью в неподвижной воде, меньше, чем время теплохода с большей скоростью в неподвижной воде, то теплоход с большей скоростью в неподвижной воде плыл против течения, то есть течение направлено от В к А.

Пусть \(v\) км/ч – скорость первого теплохода в неподвижной воде, \(v > 0\) , тогда

\(v — 2\) км/ч – скорость перемещения первого теплохода,

\((v — 1) + 2\) км/ч – скорость перемещения второго теплохода,

\(\dfrac<60>\) ч – время, затраченное первым теплоходом,

\(\dfrac<60>\) ч – время, затраченное вторым теплоходом.

Так как время, затраченное первым теплоходом, на час больше, то: \[\dfrac<60> — \dfrac<60> = 1\qquad\Leftrightarrow\qquad v^2 — v — 182 = 0\] – при \(v \neq 2, v \neq -1\) , откуда находим \(v_1 = 14, v_2 = -13\) , значит, \(v = 14\) км/ч (т.к. \(v > 0\) ).

Источник