Меню

Рек имеющих значительный гидроэнергетический потенциал

Гидроэнергетические ресурсы мира и их использование

Гидроэнергетические ресурсы имеют конечную величину, хоть и считаются возобновляемыми. Они национальное богатство, как нефть, газ или же другие полезные ископаемые, и нуждаются в бережном и обдуманном обращении.

Энергия воды

Еще в древности люди заметили, что вода, падающая сверху вниз, может совершать определенную работу, например крутить колесо. Это свойство падающей воды стало использоваться для приведения в движение колес мельницы. Так появились первые водяные мельницы, сохранившиеся до наших дней почти в своем первозданном виде. Водяная мельница – это и есть первая гидроэнергетическая установка.

Зародившееся в 17-м веке мануфактурное производство также использовало водяные колеса, а в 18-м веке, например, в России таких мануфактур было уже около трех тысяч. Известно, что самые мощные установки из таких колес были применены на Кренгольмской мануфактуре (река Нарова). Водяные колеса имели диаметр 9,5 метра и развивали мощность до 500 лошадиных сил.

Гидроэнергетические ресурсы: определение, преимущества и недостатки

В 19-м веке после водяных колес появились гидротурбины, а вслед за ними – электрические машины. Это позволило преобразовывать энергию падающей воды в электрическую энергию, а затем передавать ее на некоторое расстояние. В царской России к 1913 году было около 50 тысяч установок, оборудованных гидротурбинами, на которых вырабатывалась электроэнергия.

Та часть энергии рек, которая может быть превращена в электрическую энергию, называется гидроэнергетическими ресурсами, а устройство, преобразующее энергию падающей воды в электрическую энергию, — гидроэлектростанцией (ГЭС). Устройство электростанции обязательно включает гидравлическую турбину, которая приводит во вращательное движение электрический генератор. Для получения потока падающей воды строительство электростанции предусматривает сооружение плотин и водохранилищ.

Преимущества использования гидроэлектростанций:

  • Энергия реки является возобновляемой.
  • Отсутствует засорение окружающей среды.
  • Получается дешевая электроэнергия.
  • Улучшаются климатические условия вблизи водохранилища.

Недостатки использования гидроэлектростанций:

  • Затопление некоторой площади земли для сооружения водохранилища.
  • Изменение многих экосистем по всему руслу реки, уменьшение численности рыб, нарушение мест гнездования птиц, загрязнение рек.
  • Опасность строительства в горной местности.

Понятие гидроэнергетического потенциала

Для оценки гидроэнергетических ресурсов реки, страны или же всей планеты на Мировой энергетической конференции (МИРЭК) было дано определение гидроэнергетического потенциала как суммы мощностей всех участков рассматриваемой территории, которые можно использовать для получения электроэнергии. Существует несколько разновидностей гидроэнергетического потенциала:

  • Валовой потенциал, который представляет потенциальные гидроэнергетические ресурсы.
  • Технический потенциал – та часть валового потенциала, которая может технически использоваться.
  • Экономический потенциал – та часть технического потенциала, использование которого экономически целесообразно.

Теоретическая мощность некоторого тока воды определяется по формуле

где Q – расход водотока (м 3 /сек); H – высота падения воды (м).

Самая мощная гидроэлектростанция в мире

14 декабря 1994 года в Китае, на реке Янцзы, было начато строительство самой крупной гидроэлектростанции, получившей название «Три ущелья». В 2006 году было закончено строительство плотины, а также осуществлен запуск первого гидроагрегата. Эта ГЭС должна была стать центральной ГЭС энергосистемы Китая.

Вид плотины этой станции напоминает конструкцию Красноярской ГЭС. Высота плотины равна 185 метрам, а длина – 2,3 км. В центре плотины находится водосброс, рассчитанный на спуск 116 000 м 3 воды в секунду, то есть с высоты около 200 м за одну секунду падает более 100 тонн воды.

Река Янцзы, на которой построена гидроэлектростанция «Три ущелья», – одна из самых мощных рек мира. Строительство ГЭС на этой реке позволяет использовать природные гидроэнергетические ресурсы этого района. Начинаясь в Тибете, на высоте 5600 м, река приобретает значительный гидроэнергетический потенциал. Самым привлекательным местом для строительства плотины оказался район «Трех ущелий», где река вырывается из гор на равнину.

Конструкция ГЭС

Гидроэлектростанция «Три ущелья» имеет три здания ГЭС, в которых расположены 32 гидроагрегата, каждый из которых имеет мощность 700 МВт, и два гидроагрегата мощностью по 50 МВт. Общая мощность ГЭС равна 22,5 ГВт.

В результате строительства плотины образовалось водохранилище объемом 39 км 3 . Строительство плотины повлекло переселение на новое место жителей двух городов с общей численностью населения 1,24 миллиона человек. Кроме того, из затопляемой зоны были вывезены 1300 объектов археологии. На все работы по подготовке строительства плотины было потрачено 11,25 млрд долларов. Общие затраты на строительство гидроэлектростанции «Три ущелья» составляют 22,5 млрд долларов.

В строительстве данной ГЭС грамотно предусмотрено обеспечение судоходства, более того, после сооружения водохранилища поток грузовых судов возрос в 5 раз.

Пассажирские суда проходят судоподъемник, который пропускает суда весом, не превышающим 3000 тонн. Для пропуска грузовых судов построены две нитки пятиступенчатых шлюзов. В этом случае вес судов должен быть менее 10 000 тонн.

Каскад ГЭС на Янцзы

Водные и гидроэнергетические ресурсы реки Янцзы позволяют построить на этой реке не одну ГЭС, что и было предпринято в Китае. Выше ГЭС «Три ущелья» сооружен целый каскад ГЭС. Это самый мощный каскад гидроэлектростанций мощностью более 80 ГВт.

Строительство каскада позволяет избежать засорения водохранилища «Три ущелья», так как уменьшает эрозию в русле реки выше ГЭС. После этого переносимого ила в воде становится меньше.

Кроме того, каскад ГЭС позволяет регулировать поступление воды к ГЭС «Три ущелья» и получать равномерную выработку электроэнергии на ней.

«Итайпу» на реке Парана

Парана в переводе означает «серебряная река», она является второй по величине рекой Южной Америки и имеет длину 4380 км. Эта река протекает сквозь очень твердый грунт, поэтому, преодолевая его, она создает на своем пути пороги и водопады. Это обстоятельство указывает на благоприятные условия для строительства здесь гидроэлектростанций.

ГЭС «Итайпу» была построена на реке Парана, в 20 км от города Фос-ду-Игуасу в Южной Америке. По мощности эта гидроэлектростанция уступает только ГЭС «Три ущелья». Находясь на границе Бразилии и Парагвая, ГЭС «Итайпу» полностью обеспечивает электроэнергией Парагвай и на 20 % Бразилию.

Строительство гидроэлектростанции началось в 1970 году и закончилось в 2007-м. 10 генераторов мощностью 700 МВт установлены на стороне Парагвая и столько же — на стороне Бразилии. Так как вокруг гидроэлектростанции находился тропический лес, который подлежал затоплению, то животные из этих мест были переселены на другие территории. Длина плотины равна 7240 метрам, а высота – 196 м, стоимость строительства оценивается в 15,3 млрд долларов. Мощность ГЭС равна 14 000 ГВт.

Гидроэнергетические ресурсы России

Российская Федерация обладает большим водным и энергетическим потенциалом, но гидроэнергетические ресурсы страны распределены по ее территории крайне неравномерно. 25 % этих ресурсов расположены в Европейской части, 40 % — в Сибири и 35 % — на Дальнем Востоке. В европейской части государства, по оценкам специалистов, гидроэнергопотенциал используется на 46 %, а весь гидропотенциал государства оценивается в 2500 млрд КВт-часов. Это является вторым результатом в мире после Китая.

Источники гидроэнергии Сибири

Сибирь обладает огромными запасами гидроресурсов, особенно богата гидроэнергетическими ресурсами Восточная Сибирь. Там протекают реки Лена, Ангара, Енисей, Обь и Иртыш. Гидропотенциал этого региона оценивается в 1000 млрд кВт-часов.

Саяно-Шушенская ГЭС имени П. С. Непорожнего

Мощность этой гидроэлектростанции равна 6400 МВт. Это самая мощная ГЭС в Российской Федерации, а в мировом рейтинге она занимает 14-е место.

Участок Енисея, который называется Саянским коридором, благоприятен для построения гидроэлектростанций. Здесь река проходит сквозь горы Саяны, образуя множество порогов. Именно в этом месте построена Саяно-Шушенская ГЭС, а также и другие ГЭС, образующие каскад. Саяно-Шушенская ГЭС является самой верхней ступенью в этом каскаде.

Строительство велось с 1963-го по 2000 год. Конструкция станции состоит из плотины высотой 245 метров и длиной 1075 метров, здания ГЭС, распределительного устройства и конструкции водосброса. В здании ГЭС находятся 10 гидроагрегатов мощностью по 640 МВт.

Образовавшееся после строительства плотины водохранилище имеет объем более 30 км 3 , а его общая площадь составляет 621 км 2 .

Крупные ГЭС Российской Федерации

Гидроэнергетические ресурсы Сибири в настоящее время используются на 20 %, хотя здесь построено много достаточно крупных ГЭС. Самая крупная среди них – это Саяно-Шушенская ГЭС, за которой идут следующие гидроэлектростанции:

  • Красноярская ГЭС мощностью 6000 МВт (на Енисее). На ней установлен судоподъемник, пока единственный в Российской Федерации.
  • Братская ГЭС мощностью 4500 МВт (на Ангаре).
  • Усть-Илимская ГЭС мощностью 3840 МВт (на Ангаре).

Менее всего освоен потенциал Дальнего Востока. По оценкам специалистов, гидропотенциал этого региона используется на 4 %.

Источники гидроэнергии в Западной Европе

В странах Западной Европы гидроэнергетический потенциал используется почти полностью. Если он еще и достаточно высок, то такие страны полностью обеспечивают себя электрической энергией за счет ГЭС. Это такие страны, как Норвегия, Австрия и Швейцария. Норвегия занимает первое место в мире по производству электрической энергии на одного жителя страны. В Норвегии эта цифра составляет 24 000 кВт-часов в год, а 99,6 % этой энергии производится именно на гидроэлектростанциях.

Гидроэнергетические потенциалы различных стран Западной Европы заметно отличаются друг от друга. Это связано с различными условиями местности и различным стокообразованием. 80 % общего гидроэнергопотенциала Европы сосредоточено в горах с высокими показателями стока: западная часть Скандинавии, Альпы, Балканский полуостров и Пиренеи. Общий гидроэнергетический потенциал Европы равен 460 млрд кВт-час в год.

Запасы топлива в Европе очень малы, поэтому энергетические ресурсы рек освоены весьма значительно. Например, в Швейцарии эти ресурсы освоены на 91 %, во Франции – на 92 %, в Италии – на 86 %, а в Германии – на 76 %.

Читайте также:  Самарский край река волга

Каскад ГЭС на реке Рейн

На этой реке построен каскад гидроэлектростанций, состоящий из 27 ГЭС общей мощностью около 3000 МВт.

Одна из станций построена еще в 1914 году. Это ГЭС Laufenburg. Она дважды подвергалась реконструкции, после чего ее мощность составляет 106 МВт. Кроме того, станция относится к памятникам архитектуры и является национальным достоянием Швейцарии.

ГЭС Rheinfelden относится к современным ГЭС. Ее запуск был осуществлен в 2010 году, а мощность составляет 100 МВт. В конструкцию входят 4 гидроагрегата по 25 МВт. Эта ГЭС сооружена взамен старой станции, построенной еще в 1898 году. Старая станция сейчас находится на реконструкции.

Источники гидроэнергии в Африке

Гидроэнергетические ресурсы Африки обусловлены протекающими по ее территории реками: Конго, Нилом, Лимпопо, Нигер и Замбези.

Река Конго обладает значительным гидроэнергопотенциалом. Часть русла этой реки имеет каскад водопадов, известных как пороги Инга. Здесь водный поток спускается с высоты 100 метров со скоростью 26 000 м 3 в секунду. В этой местности и были построены 2 ГЭС: «Инга-1» и «Инга-2».

Правительство Демократической Республики Конго в 2002 году утвердило проект построения комплекса «Большая Инга», который предусматривал реконструкцию существующих ГЭС «Инга-1» и «Инга-2» и строительство третьей — «Инга-3». После осуществления этих планов решено построить самый крупный в мире комплекс «Большая Инга».

Этот проект был темой обсуждения на Международной конференции по энергетике. Приняв во внимание состояние водных и гидроэнергетических ресурсов Африки, представители бизнеса и правительств стран Центральной и Южной Африки, присутствовавшие на конференции, одобрили данный проект и установили его параметры: мощность «Большой Инги» установлена в размере 40 000 МВт, что больше самой мощной ГЭС «Три ущелья» почти в 2 раза. Сдача в эксплуатацию ГЭС намечена на 2020 год, а затраты на строительство предполагаются в размере 80 млрд долларов.

После того как проект будет реализован, ДРК станет самым крупным поставщиком электроэнергии в мире.

Энергосистема стран Северной Африки

Северная Африка расположена вдоль побережья Средиземного моря и Атлантического океана. Этот район Африки называется Магриб, или Арабский Запад.

Гидроэнергетические ресурсы в Африке распределены неравномерно. На севере континента находится самая жаркая пустыня мира – Сахара. Эта территория испытывает дефицит воды, поэтому обеспечение водой этих регионов – важнейшая задача. Ее решением является строительство водохранилищ.

Первые водохранилища появились в Магрибе еще в 30-е годы прошлого века, затем много их строилось в 60-е годы, но особенно интенсивное строительство началось в 21-м веке.

Гидроэнергетические ресурсы Северной Африки определяются в основном протекающей здесь рекой Нил. Это самая длинная река мира. В 60-е годы прошлого столетия на этой реке была построена Асуанская плотина, после строительства которой образовалось огромное водохранилище длиной около 500 км, а шириной около 9 км. Заполнение водохранилища водой происходило в течение 5 лет с 1970-го по 1975 год.

Асуанская плотина была построена Египтом при сотрудничестве с Советским Союзом. Это был интернациональный проект, в результате осуществления которого удается вырабатывать до 10 млрд кВт-часов электроэнергии в год, контролировать уровень воды в реке Нил во время паводков, накапливать воду в водохранилище в течение длительного времени. От водохранилища расходится сеть каналов, орошающих поля, а на месте пустыни появились оазисы, все больше площадей используется для земледелия. Водные и гидроэнергетические ресурсы Северной Африки использованы с максимальной результативностью.

Распределение мирового гидроэнергетического потенциала

  • Азия – 42 %.
  • Африка – 21 %.
  • Северная Америка – 12 %.
  • Южная Америка – 13 %.
  • Европа – 9 %.
  • Австралия и Океания – 3 %

Мировой гидроэнергетический потенциал оценен в 10 трлн кВт-часов электрической энергии.

20-й век можно назвать веком гидроэнергетики. 21-й век вносит в историю этой отрасли свои дополнения. В мире повысилось внимание к гидроаккумулирующим станциям (ГАЭС) и приливным электростанциям (ПЭС), использующим для получения электрической энергии силу морских приливов. Развитие гидроэнергетики продолжается.

Источник

Гидроэнергетический потенциал рек России

Содержание

В качестве интегральной энергетической характеристики ветра
широко используется удельная мощность ветрового потока, приходящаяся на единицу’ плошади поперечного сечения потока. Теоретический
ветроэнергетический потенциал оценивается с помощью формулы:
P = 0.5Pcp(F3)cp.
где P— удельная мощность [Вт/м2]; Pep — средняя плотность воздуха
[кГ/м3]; (FV)Cp- средний куб скорости.

Средний куб скорости ветра может быть выражен через среднюю
скорость как:
(V\ =1.9(Vcp)3.
а ветроэнергетический потенциал равен
P = 0.95Pcp(Fcp)3.
В качестве примера энергетических характеристик ветра на территории Томской области по сезонам года можно привести данные метеостанций. представленные в таблице 7.

Сезоны, указанные в таблице, не совпадают с календарными, но
являются однородными по ветровому режиму: зима (декабрь, январь, февраль), весна (март, апрель, май июнь), лето (июль, август, сентябрь), осень (октябрь, ноябрь).
Максимумы удельной мощности соответствуют переходным сезонам. Основной минимум относится к летнему периоду, а вторичный к зимнему.
Территориально распределение удельной мощности может характеризоваться двумя зонами: южная часть и пойма реки Оби — здесь Р
изменяется в среднем за год в пределах 150-200 Вт/м . а на остальной
территории области удельные мошностные показатели не превышают
100 Вт/м». Карта-схема распределения среднегодовой удельной мощности ветра на территории Томской области приведена на рис.
Приведенные характеристики ветроэнергетического потенциала соответствуют высоте флюгера, равной 10 м.
Для оценки ветрового потенциала территории, в частности валового. может быть использована следующая методика. Валовый потенциал рассчитывается как суммарная энергия системы ветроустановок высотой //. распределенных равномерно по территории на расстояниях. исключающих взаимное влияние энергоустановок. Обычно считается. что возмущенный ветровой поток полностью восстанавливается на
расстоянии, равном 20// от ветроэлектростанции. Это условие определяет порядок размещения ветроустановок по территории. Тогда, на территории площадью S (м ) в течение времени Т (обычно год), полная ветровая энергия всех установок определится как

где Vh tj — градации скорости ветра и их относительная продолжительность.
Технический ветровой потенциал территори

и может быть определен с учетом двух обстоятельств.
Фактически 5т — это часть территории S. остающаяся после вычитания площадей сельхозугодий, промышленных и водохозяйственных
территорий, различных строений и пр.
При определении технического потенциала территори

и в настоящее время рекомендуется придерживаться некоторых правил:
1. Для ветроэлектростан

ций большой мощности (более 100 кВт)
коэффициент использования установленной мощности должен быть не
ниже 20%.
2. Эффективность использования ветровой энергии увеличивается
с ростом мощности ветроэнергетических установок (в настоящее время
их мощность доходит до 4-6 МВт).
3. Обычно для размещения ветроэлектростанций может использоваться не более 30% территории.

Гидроэнергия. Гидроэнергетический потенциал

Гидроэнергетические ресурсы — это часть водных ресурсов территории. которая может быть использована для производства энергии.
Гидравлическая энергия рек обусловлена проекцией силы тяжести на
направление движения потока воды, которая определяется разностью
уровней воды в начале и в конце рассматриваемого участка реки. При
разности уровней Н [м] на длине участка / [м] и среднем расходе воды
О [м/с], мощность водотока Р |Вт| составит:
P=pgOH= 9810QH [Вт],
где р — птотность воды, кг/м3; g — ускорение свободного падения, м/с2.
Следовательно, гидроэнергетические установки осуществляют
энергетическое преобразование либо напора воды, либо водности при
некоторой минимальной скорости течения.
Для определения полезной мощности, производимой гидростанцией, учитывают результирующий коэффициент полезного действия установки. состоящей из гидротурбины, генератора, системы стабилизации напряжения.
Как для ветроэнергетики, гидроэнергетический потенциал водотоков региона подразделяется на теоретический или валовый, технический и экономический.

Таким образом, последовательно разбивая водоток на характерные участки, производится определение теоретического потенциала соответствующих участков и суммарного энергетического потенциала водотока. Границы участков обычно соответствуют местам изломов продольного профи.ля русла водотока. В качестве примера на рис. 4 приведен продольный профиль одной из малых рек Томской области.

Расчет продольного профиля водотока как правило производится
с помощью топографических карт масштаба не менее 1:100 ООО.
Расчет расхода воды в каждом характерном створе может проводиться
различными способами. Очевидный вариант — обработка многолетних
наблюдений. Если таких данных нет, то следует использовать карты исследуемой территории масштаба 1:100000 с изолиниями модулей среднегодового стока М [л, (с км»)]. Для определения среднемноголетней
нормы годового стока реки следует оконтурить территорию ее бассейна
до рассматриваемого пункта и вычислить искомую величину как средневзвешенное по оконтуренной водосборной плошади значение модуля.
Кроме указанных, существуют и другие способы расчета кадастров водотоков.
Обычно водность рек. а с ней и гидроэнергетический потенциал
сильно меняется по сезонам и месяцам. В частности для Томской области выделяются три гидрологических сезона: весеннее половодье, летнеосенний сезон и зимняя межень. Минимальные расходы воды наблюдаются зимой, соответственно зимний сезон считается для гидроэнергетики лимитирующим.
Наибольшая водность характерна для весеннего половодья. Во
время снеготаяния, интенсивность которого в лесной зоне сравнительно
невелика, огромное количество воды аккумулируется в поймах рек, озерах. болотах и других естественных резервуарах на поверхности территории. Одновременно происходит аккумуляция воды и в подземных во-доносных горизонтах, сложенных рыхлыми породами. Эти запасы поддерживают высокую водность рек в течение длительного времени, поэтому половодье получается большим по объему и растянутым во времени. Увеличивают продолжительность половодья и подпорные явления на устьевых участках притоков со стороны рек — водоприемников.
Фронт наступления половодья продвигается с юга на север. На
юге оно начинается в середине апреля, а на севере и северо-востоке — в
последней декаде этого месяца. Продолжительность половодья составляет 50-100 дней и зависит от его водности, величины реки, района области. Во время половодья на реках проходит 40-50% годового стока
северных рек и 60-70% южных.
Летние и осенние осадки формируют дождевые паводки и пополняют запасы подземных вод. В результате на реках Томской области,
бассейны которых находятся в лесной зоне, создается более выровненное, чем в других зонах внутригодовое распределение стока.
Летнее-осенний сезон на юге области начинается после спада половодья в июне—июле. В северных районах области этот сезон начинается на 20-30 дней позднее. Продолжительность сезона уменьшается с
юга на север от 140 до 95 суток, а доля стока в обшем объеме за год возрастает соответственно с 10 до 30%.
Некоторые малые реки со слабым подземным питанием, при отсутствии дождей, летом могут пересыхать.
Начало зимней межени определяется по началу ледостава. Это
самый продолжительный гидрологический сезон, начинающийся в конце октября на северо-востоке области и в начале ноября на юге и продолжающийся. соответственно от 190 до 170 суток. В этом же направлении — с севера на юг с 10 до 20% возрастает доля зимнего стока в годовом ходе.

Читайте также:  Полиция набережная реки мойки

Продолжительные ледовые явления существенно ограничивают возможности практического использования гидроэнергии с помощью малых гидроэлектростанций.

Технический потенциал представляет собой часть валового потенциала энергии водотока. В традиционной гидроэнергетике технический потенциал определяется как валовый, уменьшенный на величину
потерь гидроэнергии в процессе ее преобразования в электроэнергию на
ГЭС, а также потери от неиспользуемых участков водотока, различные
потери в водохранилище и др.
Таким образом, в гидроэлектростанциях плотинного типа технический потенциал гидроэнергии — это энергетический максимум генерируемой электроэнергии, который может быть получен на данном водотоке с использованием современных технических средств и технологий энергопреобразования.
Кроме плотинных ГЭС, в малой гидроэнергетике, особенно класса
микроГЭС, широко распространены деривационные и русловые гидроэнергоустановки. Такие ГЭС используют только часть руслового стока
и. как правило, осуществляют его регулирование. В этом случае понятие технический потенциал практически не имеет смысла и следует рассматривать энергетические характеристики собственно микрогидроэлектростанции.
Следует отметить перспективность бесплотинных гидроэнергоустановок в микрогидроэнергетике, определяемую их экологичностью.
простотой конструкции и малой стоимостью при достаточно высоком
уровне надежности и качества электроснабжения потребителей.
Для практического применения бесплотинных ГЭС часто весьма
эффективны малые реки. Кроме гидроэнергетического потенциала региона. для таких микроГЭС весьма важно выявление участков рек и территорий, подходящих для локального использования гидроэнергии:
большие перепады отметок местности, высокая водность и скорость течения. Локальная оценка факторов, определяющих гидроэнергетическийпотенциал, позволяет обеспечить достаточно корректное согласование между его общими оценками и возможностями энергетического использования водотока с максимальной технико-экономической эффективностью.
Возможности использования гидроэнергии в значительной степени определяются реализуемым напором воды, который, прежде всего, зависит от рельефа местности, определяющего продольные уклоны рек
на разных участках. Реки Западно-Сибирской равнины прокладывают
свои русла в сравнительно легко размываемых рыхлых грунтах. Поэтому продольный профиль их русла стремится к профилю равновесия, ко-торый характеризуется максимальными уклонами реки в верховьях с
постепенным их уменьшением по направлению к устью. Однако различие в устойчивости подстилающих пород к размыву приводят к нарушению плавной формы продольного профиля русла. Например,показано изменение уклона русла реки Киевский Еган по ее продолжительности .
Увеличения уклонов рек обычно характерны для участков Пересечения поднимающихся тектонических структур. Там. где скорость поднятия превышает интенсивность врезания реки, уклоны русла увеличиваются. а долина становится более узкой. Уклоны малых рек часто могут быть более высокими.
В качестве примера, на рис. 5 показаны аномальные уклоны рек Томской области. Выделенные участки потенциально пригодны для размещения гидроэнергетических установок.

Источник



Мировой гидроэнергетический потенциал речного стока

Гидроэнергией (водной энергией) называют энергию, которой обладает вода, движущаяся в потоках по земной поверхности. Существуют три категории гидроэнергетического потенциала (гидроэнергетических ресурсов): теоретический, технический и экономический.

При определении теоретического гидро-энергопотенциала (его называют также потенциальным и валовым) учитывается полный поверхностный сток рек, который, как уже отмечено, составляет 48 тыс. км 3 /год. Если принять среднюю высоту суши равной 800 м, то теоретический потенциал будет исчисляться в 1000 млн кВт возможной мощности, что соответствует выработке около 35 трлн кВт» ч в год. Впрочем, есть и другие оценки этого потенциала, которые колеблются в пределах от 35 трлн до 40 трлн кВт-ч.

Технический гидроэнергопотенциал – это та часть теоретического потенциала, которая технически может быть использована с учетом годовых и сезонных колебаний стока в реках, наличия подходящих створов для сооружения ГЭС, а также потерь воды вследствие испарения, фильтрации и т. д. Коэффициент пересчета теоретического потенциала в технический для разных регионов Земли и стран не одинаков, но в среднем его обычно принимают равным 0,5. Чаще всего мировой технический гидроэнергопотенциал оценивается в 15 трлн кВт-ч возможной выработки.

Наконец, экономический гидроэнергопо-тенциал – это та часть технического потенциала, использование которой в данных конкретных условиях места и времени можно считать экономически оправданным. Он меньше технического потенциала и, по оценкам, составляет 8—10 трлн кВт-ч в год, что соответствует мощности в 2340 млн кВт. Можно добавить, что эту цифру нельзя рассматривать как абсолютно стабильную. Например, после мирового энергетического кризиса середины 1970-х гг. и роста цен на топливо коэффициент пересчета технического потенциала в экономический возрос до 70–80 %, и его стали оценивать уже в 15 трлн кВт-ч в год. Но затем этот коэффициент снова снизился.

Априори можно предположить, что распределение гидроэнергетического потенциала по территории земной суши неравномерно. И действительно, согласно имеющимся данным, по размерам теоретического потенциала впереди стоит Азия (42 % мирового), за которой следуют Африка (21), Северная и Южная Америка (по 12–13 %), Европа (9) и Австралия и Океания (3 %). За этими общими цифрами географ конечно же видит размещение крупнейших речных систем мира.

Установлено, что примерно половина мирового речного стока приходится на 50 крупнейших рек, бассейны которых покрывают 40 % земной суши. В том числе 15 из них (9 в Азии, 3 в Южной, 2 в Северной Америке и 1 в Африке) имеют средний расход воды в размере 10 тыс. м 3 /с или более. Но этот показатель сам по себе еще не определяет роль той или иной реки в гидропотенциале. Например, Амазонка выносит в океан в пять раз больше воды, чем вторая по водоносности река мира – Конго. Однако Конго благодаря топографическим и геологическим особенностям территории, по которой она протекает, имеет значительно больший гидроэнергетический потенциал, чем Амазонка.

Распределение экономического гидроэнер-гопотенциала по регионам мира показано в таблице 27.

Приведенные в таблице 27 данные позволяют сделать несколько выводов. О том, что крупные регионы Земли по масштабам экономического гидропотенциала «выстраиваются» следующим образом: Зарубежная Азия, Латинская Америка, Африка и Северная Америка, СНГ, зарубежная Европа, Австралия и Океания. О том, что пока еще экономический гидропотенциал Земли используется лишь на 21 % (это означает, что в принципе годовое производство электроэнергии на ГЭС можно увеличить примерно в пять раз). Наконец, о том, что степень освоенности гидроэнергетического потенциала особенно велика в зарубежной Европе, где для сооружения ГЭС использовано уже большинство выгодных речных створов, и в Северной Америке. Наиболее благоприятные ресурсные предпосылки для развития гидроэнергетики имеют Азия, Африка и Латинская Америка. Можно добавить, что на развивающиеся страны в целом приходится еще примерно 2/3 всего неосвоенного мирового гидроэнергопотенциала.

МИРОВОЙ ЭКОНОМИЧЕСКИЙ ГИДРОЭНЕРГОПОТЕНЦИАЛ И ЕГО ИСПОЛЬЗОВАНИЕ

Среди стран по размерам экономического гидроэнергетического потенциала особо выделяется первая пятерка в составе Китая (1260 млрд кВт-ч), России (850 млрд), Бразилии (765 млрд), Канады (540 млрд) и Индии (500 млрд кВт ч), на долю которой приходится почти 1/2 всего этого потенциала. Затем следуют ДР Конго (420 кВт-ч), США (375), Таджикистан (265), Перу (260), Эфиопия (260), Норвегия (180), Турция (125), Япония (115 кВт – ч). Степень использования этого потенциала в странах очень различна. Во Франции, в Швейцарии, Италии, Японии он использован уже почти полностью, в США и Канаде на 38–40 %, тогда как в Китае – на 16, в Индии – на 15, в Перу – на 5, а в ДР Конго – на 1,5 %.

Россия обладает очень большими гидроэнергетическими ресурсами. Ее теоретический потенциал оценивается в 2900 млрд кВт-ч, технический – в 1670 млрд, а экономический, как уже отмечено, – в 850 млрд кВт ч в год. Но распределяется он по стране крайне неравномерно: на европейскую ее часть приходится 15 %, а на азиатскую – 85 %. Освоено из него пока лишь 18 % (в том числе в европейской части – 50 %, в Сибири – 19 и на Дальнем Востоке – 4 %).

Дата добавления: 2015-02-25 ; просмотров: 1515 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Гидроэнергетические ресурсы речного стока

Гидроэлектростанция является промышленным предприятием по производству электроэнергии. Сырьем в данном производстве являются гидроэнергетические ресурсы реки, которые обычно характеризуются гидравлической энергией и мощностью водотока.

Механическая энергия воды, текущей под действием силы тяжести в русле реки в направлении с более высокой на более низкую геодезическую отметку, может быть преобразована ГЭС в другие виды энергии. Максимально возможная величина механической энергии воды какого-либо участка реки, которая может быть преобразована за некоторое время t в другие виды энергии на этом участке, называется гидравлической энергией данного участка реки. Максимальная скорость, с которой указанное преобразование гидравлической энергии может осуществляться, называется мощностью водотока данного участка реки.

Читайте также:  Карта эвенкии подробная со всеми реками

Рассмотрим участок реки между живыми сечениями 1 и 2 (см. рис. 2.2). Поскольку у потока со свободной поверхностью сумма геометрической и пьезометрической высот (т.е. гидростатический напор) для любой точки сечения есть величина постоянная, высоту и давление в потоке будем характеризовать уровнем над плоскостью сравнения и давлением свободной поверхности воды. Механическая энергия воды, протекающей через сечение 1 за время t, равна

Э 1 = m 1 gH g 1 = 1 v 1 tgH g 1 = gQ 1 H g 1 t. (2.8)

Аналогично механическая энергия воды, протекающей через сечение 2 за то же время t, равна

Э 2 = m 2 gH g 2 = 2 v 2 t gH g 2 = gQ 2 H g 2 t. (2.9)

Здесь m 1 и m 2 — массы воды, протекающей соответственно через сечения 1 и 2 за время t. Таким образом, в участок реки 1-2 через сечение 1 за время t вносится энергия Э 1, а выносится через сечение 2 за то же время энергия Э 2. При на участке реки происходит потеря энергии или ее накопление в количестве, равном разности энергий Э 1 и Э 2 (Э 1-2). Если на рассматриваемом участке нет каких-либо дополнительных притоков или потерь воды, то с учетом условия неразрывности потока за время t через сечение 2 пройдет такое же количество воды, как и через сечение 1, а Q 1= Q 2= Q. При этом максимальная величина разности Э 1-2 характеризует величину энергии, которую рассматриваемый участок способен отдать за время t, то есть гидравлическую энергию данного участка реки .

Найдем разность Э 1-2:

Э 1-2 = Э 1 — Э 2 = gQ ( H g 1 — H g 2 ) t = gQ H 1-2 t, (2.10)

где H 1-2 = H g 1 — H g 2 — потеря гидродинамического напора на участке реки 1-2. Учитывая, что плотность воды = 1000 кг/м 3 , а g = 9,81 м/с 2 , получим величину энергии Э 1-2 за время t, с, в джоулях:

Поскольку в электроэнергетике принято энергию выражать в киловатт-часах (кВт . ч), то

Э 1-2 = 9,81 . Q H 1-2 t /3600 = W . H 1-2 /367 = 0,00272 W . H 1-2. (2.12)

Мощность потерь энергии водотока N 1-2, кВт, при этом определяется как:

. (2.13)

Найдем теперь максимально возможные значения Э 1-2 и N 1-2. Расход Q обуславливается возможностями речного стока и в пределах участка 1-2 постоянен. Поэтому максимальные значения Э 1-2 и N 1-2 достигаются при максимуме H 1-2. Проанализируем выражение для H 1-2:

H 1-2 = H g 1 — H g 2 = ( z 1 — z 2 ) + ( p 1 — p 2 )/ g + ( v 1 2 — v 2 2 )/2 g. (2.14)

Величина первого слагаемого определяется рельефом местности. Для участков протяженностью около 100 км его значение имеет порядок от единиц до десятков метров. Второе и третье слагаемое выражения достигают максимума при p 2 = 0 и v 2 = 0. В то же время для открытых речных водотоков давления p 1 и p 2 приблизительно равны и равны атмосферному давлению. Поэтому второе слагаемое с большой точностью равно нулю. Скоростной напор v 1 2 /2 g для характерной скорости потока воды v 1 1 м/с имеет величину приблизительно 5 см и на практике обычно значительно меньше величины первого слагаемого. В связи с этим для практических расчетов принимается, что максимальная величина H 1-2 протяженных участков реки равна

H 1-2 z 1 — z 2. (2.15)

Обычно значение H 1-2, полученное из (2.15), называют геометрическим напором участка реки 1-2. Таким образом, выражения (2.12) и (2.13) с учетом (2.15) определяют гидравлическую энергию и мощность водотока участка реки.

Следует заметить, что для свободнопоточных микро ГЭС, интерес к которым в последние годы возрастает, основной вклад в напор H 1-2 в (2.14) дает третье слагаемое, поскольку из-за отсутствия плотины z 1 z 2. В связи с этим при проектировании их конструкции стремятся максимально сконцентрировать скоростной напор водного потока на рабочем колесе установки.

Мощность водотока, вычисленная по формуле (2.13), не полностью превращается на ГЭС в полезную электрическую мощность, поскольку при преобразовании энергии неизбежны потери (потери в водоприемнике, водоводах, турбине, генераторе). Суммарное значение КПД ГЭС меньше 1. С учетом сказанного полезная электрическая мощность ГЭС , кВт, и выработка ею электроэнергии , кВт . ч, за период работы T определяются выражениями:

, (2.16)

, (2.17)

где — разность уровней воды в метрах перед и за плотиной (напор на ГЭС); период времени T измеряется в часах.

В естественных условиях полная энергия водного потока реки уменьшается вдоль русла, в основном, вследствие работы сил внутреннего трения между частицами воды и работы сил трения между потоком и руслом и, таким образом, расходуется на поддержание экологического состояния реки.

При рассмотрении вопроса о гидроэнергетических ресурсах различают следующие понятия:

1) валовой теоретический (брутто) гидроэнергетический потенциал, или потенциальные гидроэнергетические ресурсы, рассматривается в двух видах:

гидроэнергетический потенциал поверхностного стока, учитыва-ющий полную сумму механической энергии всех стекающих вод на территории данного района, страны или отдельного речного бассейна;

гидроэнергетический потенциал речного стока, учитывающий полную теоретическую сумму энергии только речного стока;

2) технический гидроэнергетический потенциал, или технически возможные к использованию гидроэнергетические ресурсы, — это та часть валового теоретического гидропотенциала речного стока, которая по состоянию современного технического уровня развития гидроэнергетического строительства может быть использована или уже используется (ориентировочно в настоящее время он составляет 24-52 % от теоретического потенциала);

3) экономически эффективная часть гидроэнергетических ресурсов, или экономические гидроэнергетические ресурсы, — это та часть гидро-энергетических ресурсов, использование которой является экономически оправданным.

Данные о гидроэнергетическом потенциале речного стока являются отправными при анализе экономической эффективности его использования.

На практике гидроэнергетические ресурсы обычно характеризуются двумя параметрами: суммарной мощностью стока и суммарным годовым запасом гидроэнергии. Для речных стоков потенциальные гидроэнергоресурсы оцениваются по приведенной ниже методике.

Для водотоков длиной более 100 км широко используется метод «линейного учета», который заключатся в том, что река делится на ряд участков и для каждого участка отдельно определяется мощность N, кВт, по формуле

, (2.18)

где и — расходы воды в реке соответственно в начале и в конце участка, м 3 /с; H — падение реки (геометрический напор) на данном участке, м. Потенциальные запасы гидроэнергии участка реки Э, кВт . ч, определяются исходя из 8760 час (365 суток) использования потенциальной энергии по формуле

. (2.19)

Исчисление проводится по реке, без притоков, путем суммирования показателей гидроэнергетических ресурсов по отдельным участкам — от истока и до устья, а гидроэнергоресурсы притоков подсчитываются таким же образом отдельно. Все подсчеты обычно выполняются для среднемноголетнего значения стока реки. При водохозяйственном проектировании гидроузлов дополнительно проводятся расчеты для маловодных и многоводных лет, а также для лет с обеспеченностью стока в 50 и 95 % и такой же обеспеченностью годовой выработки электроэнергии.

Для подсчетов потенциальных гидроэнергетических ресурсов реки методом линейного учета существенное значение имеет правильное разделение реки на расчетные участки. Разделение на участки осуществляется с учетом уклонов реки, створов впадения ее крупных притоков и соответствующего увеличения стока, а также в зависимости от наиболее выгодных створов по топографическим, геологическим и технико-экономическим условиям. Число участков должно быть достаточным, чтобы выполненные подсчеты дали возможно более точное значение суммарной мощности для всей реки. Вместе с тем в целях избежания излишнего дробления реки на участки и уменьшения числа расчетов следует назначать опорные точки, определяющие собой границы участков, в основном, сообразуясь с нарастанием расходов воды по высоте падения реки и наличием гидрологической информации. Особенно большое значение имеет правильное разделение на участки рек, верховья которых характеризуются значительными падениями, но малыми расходами воды. Для этих рек следует точнее назначать границы верхних участков, что гарантирует подсчеты от преувеличения суммарной мощности рек. Число расчетных участков назначается в зависимости от протяженности и особенностей продольного профиля реки. Для крупных рек в целях более подробного освещения распределения потенциальных запасов гидроэнергии по длине реки число расчетных участков принимается примерно 15-20 и более, для небольших рек — 4-8 и для самых малых рек — 2-4.

Для водотоков длиной менее 100 км суммарные мощность N, кВт, и энергия Э, кВт . ч, могут быть вычислены упрощенным способом по формулам:

, (2.20)

Э , (2.21)

где — расход в устье реки, м 3 /с; — падение реки от истока до устья, м; — коэффициент, равный 0,4 .

В подсчетах величины гидроэнергетических ресурсов исключительно большое значение имеют исходные данные: а) картографические — для определения длины, площади водосбора и падения реки, б) гидрологические — для определения среднегодовых значений расходов реки на всем ее протяжении.

Источник