Меню

Теплоход проходит по течению реки до пункта назначения 480км

Теп­ло­ход про­хо­дит по те­че­нию реки до пунк­та на­зна­че­ния 285 км и после сто­ян­ки воз­вра­ща­ет­ся в пункт от­прав­ле­ния. Най­ди­те ско­рость те­че­ния, если ско­рость теп­ло­хо­да в не­по­движ­ной воде равна 34 км/ч, сто­ян­ка длит­ся 19 часов, а в пункт от­прав­ле­ния теп­ло­ход воз­вра­ща­ет­ся через 36 часов после от­плы­тия из него.

Основные формулы для решения задачи:V по теч. = Vc + V теч. — скорость по течению рекиV против теч. = Vc — V теч. — скорость против теченияt по теч.= S/V по теч. — время на путь по течению рекиt против теч. = S/V против теч. — время на путь против течения рекиПо условию:Скорость теплохода в неподвижной воде -это собственная скорость теплохода (Vc) .Путь в одну сторону S = 285 кмВремя на путь туда-обратно t = 36 — 19 = 17 часов.Пусть скорость течения Vc = х км/чПуть по течению:Скорость Vпо теч. = (34 + х ) км/чВремя в пути t₁= 285/(34+x) ч.Путь против течения:Скорость V против теч. = (34 — х) км/чВремя в пути t₂ = 285/(34-x) ч.Время на путь туда-обратно : t₁ +t₂ = 17 ч.Уравнение.285/(34+х) + 285/(34-х) = 17 |×(34+x)(34-x)знаменатели ≠ 0 ⇒ х≠ 34 ; х≠ = -34285(34-x) + 285(34+x) = 17(34+x)(34-x)9690 — 285x + 9690 + 285x= 17(34² — x² )19380 = 17(1156 -x²) |÷171140= 1156 — x²x²= 1156-1140x² = 16x₁ = — 4 не удовлетворяет условию задачих₂ = 4 (км/ч) Vтеч.Ответ: 4 км/ч скорость течения реки.

Также наши пользователи интересуются:

⭐⭐⭐⭐⭐ Лучший ответ на вопрос «Теп­ло­ход про­хо­дит по те­че­нию реки до пунк­та на­зна­че­ния 285 км и после сто­ян­ки воз­вра­ща­ет­ся в пункт от­прав­ле­ния. Най­ди­те ско­рость те­че­ния, если ско­рость теп­ло­хо­да в не­по­движ­ной воде равна 34 км/ч, сто­ян­ка длит­ся 19 часов, а в пункт от­прав­ле­ния теп­ло­ход воз­вра­ща­ет­ся через 36 часов после от­плы­тия из него.» от пользователя Алексей Гагарин в разделе Математика. Задавайте вопросы и делитесь своими знаниями.

Открой этот вопрос на телефоне — включи камеру и наведи на QR-код!

Источник

Теплоход проходит по течению реки до пункта назначения 480км

Вопрос по математике:

Теплоход проходит по течению реки до пункта назначения 360 км и после стоянки возвращается в пункт отправления. Найдите скорость теплохода в неподвижной воде, если скорость течения равна 1 км/ч, стоянка длится 6 часов, а в пункт отправления теплоход возвращается через 44 часов после отплытия из него. Ответ дайте в км/ч.

Ответы и объяснения 1
Знаете ответ? Поделитесь им!

Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и пунктуационных ошибок.
Читайте также:  Шишков угрюм река пдф

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
  • Использовать мат — это неуважительно по отношению к пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Математика.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи — смело задавайте вопросы!

Математика — наука о структурах, порядке и отношениях, исторически сложившаяся на основе операций подсчёта, измерения и описания формы объектов.

Источник



11. Текстовые задачи

Формат ответа: цифра или несколько цифр, слово или несколько слов. Вопросы на соответствие «буква» — «цифра» должны записываться как несколько цифр. Между словами и цифрами не должно быть пробелов или других знаков.

Примеры ответов: 7 или здесьисейчас или 3514

Движение по воде

От пристани A к пристани B отправился с постоянной скоростью первый теплоход, а через 1 час после этого следом за ним со скоростью на 1 км/ч большей отправился второй. Расстояние между пристанями равно 110 км. Найдите скорость второго теплохода, если в пункт B он прибыл одновременно с первым. Ответ дайте в км/ч.

Моторная лодка прошла против течения реки 255 км и вернулась в пункт отправления, затратив на обратный путь на 2 часа меньше. Найдите скорость лодки в неподвижной воде, если скорость течения равна 1 км/ч. Ответ дайте в км/ч.

Теплоход проходит по течению реки до пункта назначения 200 км и после стоянки возвращается в пункт отправления. Найдите скорость течения, если скорость теплохода в неподвижной воде равна 15 км/ч, стоянка длится 10 часов, а в пункт отправления теплоход возвращается через 40 часов после отплытия из него. Ответ дайте в км/ч.

От пристани A к пристани B отправился с постоянной скоростью первый теплоход, а через 1 час после этого следом за ним со скоростью на 1 км/ч большей отправился второй. Расстояние между пристанями равно 420 км. Найдите скорость первого теплохода, если в пункт B оба теплохода прибыли одновременно. Ответ дайте в км/ч.

Моторная лодка прошла против течения реки 112 км и вернулась в пункт отправления, затратив на обратный путь на 6 часов меньше. Найдите скорость течения, если скорость лодки в неподвижной воде равна 11 км/ч. Ответ дайте в км/ч.

Путешественник переплыл море на яхте со средней скоростью 20 км/ч. Обратно он летел на спортивном самолете со скоростью 480 км/ч. Найдите среднюю скорость путешественника на протяжении всего пути. Ответ дайте в км/ч.

Читайте также:  Ловля рака в реке кубань

Теплоход проходит по течению реки до пункта назначения 255 км и после стоянки возвращается в пункт отправления. Найдите скорость теплохода в неподвижной воде, если скорость течения равна 1 км/ч, стоянка длится 2 часа, а в пункт отправления теплоход возвращается через 34 часа после отплытия из него. Ответ дайте в км/ч.

Пристани А и В расположены на озере, расстояние между ними 390 км. Баржа отправилась с постоянной скоростью из А в В. На следующий день после прибытия она отправилась обратно со скоростью на 3 км/ч больше прежней, сделав по пути остановку на 9 часов. В результате она затратила на обратный путь столько же времени, сколько на путь из А в В. Найдите скорость баржи на пути из А в В. Ответ дайте в км/ч.

Расстояние между пристанями А и В равно 120 км. Из А в В по течению реки отправился плот, а через час вслед за ним отправилась яхта, которая, прибыв в пункт В, тотчас повернула обратно и возвратилась в А. К этому времени плот прошел 24 км. Найдите скорость яхты в неподвижной воде, если скорость течения реки равна 2 км/ч. Ответ дайте в км/ч.

Теплоход, скорость которого в неподвижной воде равна 25 км/ч, проходит по течению реки и после стоянки возвращается в исходный пункт. Скорость течения равна 3 км/ч, стоянка длится 5 часов, а в исходный пункт теплоход возвращается через 30 часов после отплытия из него. Сколько километров прошел теплоход за весь рейс?

Баржа в 10:00 вышла из пункта А в пункт В, расположенный в 15 км от А. Пробыв в пункте В 1 час 20 минут, баржа отправилась назад и вернулась в пункт А в 16:00. Определите (в км/час) скорость течения реки, если известно, что собственная скорость баржи равна 7 км/ч.

Теплоход проходит по течению реки до пункта назначения 399 км и после стоянки возвращается в пункт отправления. Найдите скорость течения, если скорость теплохода в неподвижной воде равна 20 км/ч, стоянка длится 2 часа, а в пункт отправления теплоход возвращается через 42 часа после отплытия из него. Ответ дайте в км/ч.

От пристани А к пристани В отправился с постоянной скоростью первый теплоход, а через 1 час после этого следом за ним со скоростью на 1 км/ч большей отправился второй. Расстояние между пристанями равно 420 км. Найдите скорость первого теплохода, если в пункт В оба теплохода прибыли одновременно. Ответ дайте в км/ч.

Читайте также:  Наибольший объем годового стока имеет река северной америки

Пристани A и B расположены на озере, расстояние между ними 195 км. Баржа отправилась с постоянной скоростью из A в B. На следующий день она отправилась обратно со скоростью на 2 км/ч больше прежней, сделав по пути остановку на 2 часа. В результате она затратила на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость баржи на пути из A в B. Ответ дайте в км/ч.

Расстояние между пристанями A и B равно 189 км. Из A в B по течению реки отправился плот, а через 1 час вслед за ним отправилась яхта, которая, прибыв в пункт B, тотчас повернула обратно и возвратилась в A. К этому времени плот прошел 50 км. Найдите скорость яхты в неподвижной воде, если скорость течения реки равна 2 км/ч. Ответ дайте в км/ч.

Теплоход, скорость которого в неподвижной воде равна 20 км/ч, проходит по течению реки и после стоянки возвращается в исходный пункт. Скорость течения равна 4 км/ч, стоянка длится 6 часов, а в исходный пункт теплоход возвращается через 36 часов после отплытия из него. Сколько километров прошел теплоход за весь рейс?

По морю параллельными курсами в одном направлении следуют два сухогруза: первый длиной 130 метров, второй — длиной 120 метров. Сначала второй сухогруз отстает от первого, и в некоторый момент времени расстояние от кормы первого сухогруза до носа второго составляет 600 метров. Через 11 минут после этого уже первый сухогруз отстает от второго так, что расстояние от кормы второго сухогруза до носа первого равно 800 метрам. На сколько километров в час скорость первого сухогруза меньше скорости второго?

Источник

Теплоход проходит по течению реки до пункта назначения 480км

ПОДГОТОВКА К ЕГЭ ПО МАТЕМАТИКЕ.

РЕШЕНИЕ ЗАДАНИЯ В13.

ТЕКСТОВЫЕ ЗАДАЧИ.

ЗАДАЧА 11.

Теплоход проходит по течению реки до пункта назначения 255 км и после стоянки возвращается в пункт отправления. Найдите скорость теплохода в неподвижной воде, если скорость течения равна 1 км/ч, стоянка длится 2 часа, а в пункт отправления теплоход возвращается через 34 часа после отплытия из него. Ответ дайте в км/ч.

V скорость t время S расстояние
по течению 255
против течения 255
собств. теплохода
течения 1

Найдём общее время, которое теплоход провёл в движении:

Перенесём всё в левую часть:

Упростим уравнение (приведем к общему знаменателю):

Напрашивается применение формулы разности квадратов :

Раскроем скобки (внимательно — не путаем знаки):

Поменяем знаки (умножив мысленно обе части на -1):

Получаем прекрасное квадратное уравнение . Решаем его:

Источник